Architecture Analysis Research Project Status

Don Ohi, L-3 Communications Chris Walter, WW Technology Group Jim Dabney, L-3 Communications

Overview

- Architecture IV&V
- Architecture Analysis Research Elements
 - Architecture Perspectives
 - Topics for analytical investigation
 - Views for improving architecture specifications
 - Architecture Analysis Framework
 - Tailorable set of architecture analysis objectives
 - Methods for accomplishing objectives

Impact of Architecture Phase IV&V

- Architectural issues are a leading source for integration problems
- Without systematic upfront analysis these problems are costly to repair
- Application of complexity, safety and dependability analysis enables addressing the issues early on
- Architectural decisions impact what is required of the software

Source: NIST Planning report 02-3, "The Economic Impacts of Inadequate Infrastructure for Software Testing", May 2002.

 Improved architecture specifications reduce software risk and increase IV&V's ability to validate and verify the software

Architecture Analysis Research Elements

Frameworks

DoDAF 2.0

Logical Classes – Services Development Software Decomposition Process Groups of Tasks Physical Where Things Are

ATAM

Evaluation

Representation

DoDAF Views included in CSADD

View	Section	Comments
OV-2	3.1.1	Operational resource flow description Not complete in current version Map to operational scenarios (also not complete) Hierarchical or mission phase views
OV-3	3.2	Operational resource flow matrix Decomposed by mission phase and needline type Limitations of OV-2 make OV-3 completeness assessment difficult Many TBD
OV-5	3.4	Operational activity model Presented via activity diagrams and flowcharts Some activities (e.g. build process) missing OV-3 antecedent IDEF0 notation is recommended due to more complete activity description More complete set of scenarios recommended
SV-1	4.1	System interface description Systems and interfaces to realize OV-2 Levels of specification management in CSADD could be improved
SV-2	4.2	Systems communication description CSADD will require more detail
SV-6	4.3	Systems data exchange matrix Tabular characterization of data form SV-1 and SV-2 CSADD contains abridged SV-6

CSADD Tailoring Analysis

- CSADD based on DoDAF 1.0
- Some sections explicitly mapped to DoDAF
- Tailored-out views which would help
 - AV-1 Executive Summary
 - AV-2 Integrated dictionary (partially tailored)
 - OV-6 Operational activity sequence & timing
 - Significant weakness
 - SV-4 Systems functionality description
 - Systems version of OV-5

CSADD Compliance with DoDAF 2.0

- Activities replace operational nodes impacts operational viewpoints
- More hierarchical OV-2 would facilitate traceability analysis
- Adoption of service-oriented approach (SvcV replacing SV) recommended
- Used emergency voice as test case
 - Generally, not enough detail provided
 - Example: emergency voice software not differentiated from primary voice

Verifiability

- Features of the architecture are mapped to requirements, which are then mapped to the verification tests that verify them
 - All components have requirements that are tested
 - All component interfaces have specified requirements that are mapped to verification tests
 - All critical scenarios coverable/covered by test cases
- Technical budgets, budget allocations, and compliance to budgets expressed in observable/measurable terms
- Risks noted for untestable capabilities, services, interactions, and scenarios and a risk mitigation approach using simulation and analysis planned

September 16, 2010 9

Managing Levels of Specification

- This perspective is concerned with managing
 - Properties of a system as a whole
 - Properties that are allocated to the parts from which it is composed
- Document descriptions are information subsets (i.e. abstractions) that need to fit in an organized hierarchy
- Assessing levels of specification can:
 - Detect misalignment of levels of specifications (e.g. semantics)
 - Gaps in interfacing stakeholder/developer abstractions (e.g. omissions)
 - Potential system integration issues (e.g. pattern errors)

Levels of Specification and Multiple Objectives

- The primary objectives of a system should leave many degrees of freedom for design open
 - Detect stakeholder biases that introduce artificial constraints on downstream tradeoffs
 - Requirements that bias the problem space
 - Implementations that bias the solution space
- Downstream options are then eliminated on the basis of the secondary objectives of the work system
- In many systems, the primary objectives, secondary objectives, and external constraints are often conflicting
- Objectives, like safety or fault tolerance, can have conflicting implementations (e.g. "do nothing" may be safest!)

Levels of Specification and Safety Example

- When objectives, like safety or fault tolerance, have conflicting implications it was unclear in the CSADD how conflicts were resolved
- There is a risk that system level requirements like safety may merely be specified as measures of goodness at a component level
- Need to determine if interpretation of safety is consistent at different levels of specification and among system stakeholders
- Need to determine if an implementation can compromise a critical objective when mixed with other factors (either critical/non-critical)
 - E.g. scheduling of critical communications over a shared network or writing to a shared database

September 16, 2010 12

Architecture Analysis Context

IV&V Architecture Analysis Tasks

Completeness

Specification completeness

Functional Capability Mapping

Verifiability

Reuse Analysis

Interface requirements traceability analysis

Levels of Specification

Levels of specification identification

Stakeholder analysis

Dependency mapping analysis

Technical budgets analysis

Top-level requirements mapping

Scenario development

Fault management and redundancy analysis

Key driving requirements validation

Evolvability analysis

Comparison to lower level architecture specifications

Task Phasing

Concept Review	SRR	SDR		PDR CDR	
Stakeho	older analysis	Specification Completeness SDR	Specification Completeness F		
	Levels of Specification Identification		Scenario Analysis		
	Key Driving Requireme	ents Validation			
	Top-level Re	equirements Mapping	ements Mapping Fault Management and Redundancy Analysi		
	Technical Budgets Analysis				
		Reuse Analysis			
		Fun	Functional Capability Mapping		
			Depen	dency Mapping Analysis	
				Evolvability Analysis	
			Interface Requirement Analysis		
			Comparis	on to Lower Level Architecture	

Specifications

IV&V Techniques

- Specification Completeness
 - DoDAF content checklists
- Levels of Specification Identification
 - Keyword and phrase pattern search vertically through document tree
- Scenario analysis
 - Scenario modeling, and simulation and test
- Fault Management and Redundancy Analysis
 - Error propagation analysis and containment
 - Coupling analysis
- Technical budgets Analysis
 - Budget identification from ADD and document tree
 - Analyze budget allocation, feasibility
- Mapping Tasks (Functional Capability Mapping, Dependency Mapping Analysis, I/F Requirements Traceability Analysis, Top-level Requirements Mapping)
 - Quality function deployment (QFD) matrix

Tool Support Opportunities

- Smart keyword search
- Budget mapping tool
- Scenario visualization and testing
- Tracing tools (implement QFD House of Quality)

Architecture Analysis Tailoring

- Involves selecting project-applicable tasks
- Guided by project manager's tailoring goals
 - Breadth vs. depth
 - Comprehensive vs. limited
- Driven by many factors
 - Overall system criticality and risk
 - Architecture style (DoDAF, 4+1, etc)
 - Mission type/System type
 - Development approach
 - Development phase
 - Artifact availability and maturity
 - Task dependencies

Summary

- Architecture IV&V essential
- CSADD-inspired ADD improvements
 - Completeness
 - Verifiability
 - Levels of abstraction
- IV&V architecture methodologies
 - Ideal task set covers all aspects of architecture
 - Techniques achieve tasks
 - Tools facilitate and automate techniques